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Fig. 1. Our segment-based formulation and estimation strategies open the door to new rendering methods that use segments as the basic unit of light
transport. Here we show an equal-time (250s) comparison of a novel, segment-based bidirectional path filtering method (Ours) to existing state-of-the-art
filteringmethods,Multi-vertex Filtering (MVF)[Deng et al. 2021] and Photon Filtering (PhF)[West et al. 2022], and two robust bidirectional renderingmethods,
Bidirectional Photon Mapping (BPM)[Vorba 2011] and Unified Path Sampling (UPS)[Hachisuka et al. 2012]. Our segment-based approach robustly handles
the predominantly indirect lighting and complex occlusion of theWarehouse scene, demonstrating significantly reduced estimation error over prior methods.

We propose a novel segment-based light transport framework that uses seg-
ments as the basic unit of light transport. Unlike vertex-based formulations,
our segment-based formulation naturally accommodates the disconnected
subpaths encountered in photon density estimation and path filtering meth-
ods, and opens the door to a wide range of new rendering methods that
consider segments as a sampling primitive. To facilitate the development
of segment-based rendering methods, we introduce several segment sam-
pling techniques and estimation strategies, including a highly-performant
recursive estimator. One of our key contributions is a general-purpose seg-
ment sampling framework based on marginal multiple importance sam-
pling (MMIS). To demonstrate the practicality of our sampling framework,
we show how it allows us to easily implement a robust bidirectional path fil-
tering method — challenging under a vertex-based formulation — achieving
superior filtering efficiency and convergence compared to state-of-the-art
approaches.
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1 INTRODUCTION
Monte Carlo (MC) rendering classically simulates light transport
by sampling light transport paths (sequences of vertices) that con-
nect light sources and sensors. Modern rendering methods such
as photon density estimation [Jensen 1996; Hachisuka et al. 2008;
Hachisuka and Jensen 2009] and path filtering [Keller et al. 2014;
Binder et al. 2018, 2019;West et al. 2020; Deng et al. 2021;West et al.
2022], however, sample disconnected light transport paths first to
approximately construct complete (connected) light transport paths
later. Such methods often enable efficient reuse of multiple discon-
nected subpaths based on proximity, but a proper formulation that
supports extra vertices at disconnections is necessary. To address
such extra vertices, Georgiev et al. [2012] introduced the concept
of vertex merging into photon density estimation that can be in-
terpreted as rejection sampling with an associated probability of
acceptance. West et al. [2020, 2022] alternatively formulated extra
vertices in path filtering as marginalized variables in a continuous
domain of path sampling techniques.
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Another formulation to address those extra vertices is the ex-
tended path integral formulation [Hachisuka et al. 2012]. This for-
mulation extends the space of the integration problem in the orig-
inal path integral formulation [Veach 1997] to directly support dis-
connected subpaths as simple MC samples in the extended path
space. Hachisuka et al. [2012] also pointed out that this formula-
tion theoretically supports multiple disconnections along a path.
In its extreme case, one can consider disconnection at every single
vertex along a path, turning sampling of a path into sampling of
a sequence of disconnected segments. Despite this segment-based
view in its most generalized form, Hachisuka et al. [2012] only con-
sidered using one disconnection along a path as in photon density
estimation or path filtering, losing its connection to sampling of
segments. The core nature of segments as a sampling primitive in
light transport simulation has largely been left unexplored.
We revisit this segment-based path integral formulation, intro-

duce a first practical segment sampling framework based on mar-
ginal multiple importance sampling (MMIS) [West et al. 2022], and
explore several segment-based rendering methods. Our segment-
based light transport simulation opens up many unexplored op-
tions of more efficient methods. As one example of the practicality
of our framework, we show how it enables a performant and con-
sistent estimator of bidirectional path filtering — something that
is not easily achievable without our segment-based approach. Our
bidirectional path filtering method outperforms both the underly-
ing sampling algorithm and state-of-the-art path filtering methods.
Concretely, our contributions are:
• a segment-based path integral formulation,
• sampling techniques for segments and segment paths,
• practical estimation strategies and implementable algorithms
for the proposed formulation, and

• a robust bidirectional path filteringmethod that out performs
the state-of-the-art path reuse rendering methods

2 BACKGROUND
The path integral formulation [Veach 1997] defines the intensity 𝐼𝜌
of each pixel 𝜌 as an integral over the space P of all possible light
transport paths that can travel through a virtual scene,

𝐼𝜌 =
∫
P
𝑓𝜌 (x) dx =

∞∑
𝑘=1

∫
P𝑘

𝑓𝜌 (x) dx

=𝐼𝑘

, (1)

where P𝑘 is the set of paths x of 𝑘 vertices x, x = {x1 . . . x𝑘 }, and
the contribution 𝑓𝜌 (x) is

𝑓𝜌 (x) =𝑊𝜌 (x1, x2 )
𝑘∏
𝑖=1

𝐺 (x𝑖 , x𝑖+1 )
𝑘−1∏
𝑖=2

𝑓𝑟 (x𝑖−1, x𝑖 , x𝑖+1 ) 𝐿𝑒 (x𝑘−1, x𝑘 ) , (2)

where𝑊𝜌 (x, y) is the sensor responsivity for the pixel 𝜌 ,𝐺 (x, y) is
the geometry term, 𝑓𝑟 (x, y, z) is the bidirectional scattering distri-
bution function (BSDF) (i.e., throughput), and 𝐿𝑒 (x, y) is the light
emitted from y towards x.

MC integration of the path integral (1) operates by sampling
paths (i.e., a sequence of vertices). Each vertex x𝑖 is connected via
an edge to the following vertex x𝑖+1 to construct a complete path.

x1 x3 x4x2

PT
(inline)

xk≈

2.1 Disconnected Subpaths
Sampling a complete path that connects a light source and a sen-
sor can become fundamentally challenging in certain cases. Bidirec-
tional sampling of subpaths followed by connection of vertices [Veach
and Guibas 1995; Lafortune and Willems 1993] is one approach
to address such difficult cases, but Veach [1997] pointed out that
such local sampling of subpaths is fundamentally unable to cap-
ture paths without two consecutive diffuse (D) events in the ex-
tended Heckbert notation [Heckbert 1990]. Hachisuka et al. [2008]
later coined a term ”SDS” (specular-diffuse-specular) paths to col-
lectively refer to such challenging paths, and demonstrated how
renderingmethods that sample disconnected subpaths first and then
approximately construct complete paths can be much more effi-
cient at handling such paths. Under these methods, sub-paths with
disconnected end points are used to form a complete path. In the
following, disconnected subppaths refer to such cases, not those
that can be easily handled by connections in bidirectional meth-
ods [Veach and Guibas 1995; Lafortune and Willems 1993],

x1 x3 x4

xk

x2

Merging
(inline)

xk≈

x′ 2

Photon density estimation. Photon density estimation methods
[Jensen 1996; Hachisuka et al. 2008; Hachisuka and Jensen 2009]
formulate this process as density estimation of light sub-paths over
a region (i.e., the support of a kernel function).

x1 x3 x4

xk

x2

Photon Mapping
(inline)

xk≈

x′ 2

Density estimation at disconnected sub-paths introduces bias from
the solution to the path integral formulation. Hachisuka et al. [2008]
and Hachisuka and Jensen [2009] proposed to progressively reduce
the bandwidth of the density estimation kernel to make its bias con-
vergent to zero in the limit. Knaus and Zwicker [2011] reformulated
this progressive reduction a as probabilistic framework to simplify
its implementation. Vorba [2011] showed how to combine multiple
sampling techniques of a complete path at different disconnection
points via MIS [Veach and Guibas 1995]. Many other approaches
exist to address the problem of bias in photon density estimation
[Kaplanyan and Dachsbacher 2013; Lin et al. 2020; Qin et al. 2015;
Misso et al. 2022].

Path filtering. An alternative way to formulate handling of dis-
connected paths is path-space filtering [Keller et al. 2014; Binder
et al. 2018, 2019; West et al. 2020; Deng et al. 2021; West et al. 2022],
where unidirectional sub-path samples are combined over a filter-
ing kernel to construct novel paths.

x′ 1
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West et al. [2020] reinterpret the sub-path reuse of path filtering
as conditional sampling on auxiliary variables, replacing the uni-
form kernel functions with a weighting function based on stochas-
tic multiple importance sampling (SMIS). To further amortize sam-
pling cost and improve reuse efficiency, Deng et al. [2021] introduce
path graphswith an efficient propagation-based algorithm for filter-
ing at multiple vertices along a path, and West et al. [2022] show
that multi-vertex path filtering is equivalent to SMIS over multiple
technique spaces (i.e., marginalMIS (MMIS)), and propose a general
purpose path sampling framework for path reuse.

2.2 Paths to Segments
The path integral formulation (1) only considers complete and con-
nected paths, thus proper handling of extra vertices in disconnected
(sub)paths needs some extensions in its formulation. Georgiev et al.
[2012] showed the extra vertices encountered in photon density es-
timation can be interpreted as random variables in a rejection sam-
pling process. West et al. [2020, 2022] showed the extra vertices in
path-space filtering can be interpreted as random variables that pa-
rameterize path sampling techniques as sampling from a marginal
distribution. While these formulations are sound, they both con-
sider converting disconnected sub-paths into corresponding com-
plete and connected paths to make them compatible with the orig-
inal path integral formulation. In other words, extra vertices are
essentially removed in its formulation so that one can still use the
path integral formulation.
In contrast, the extended path integral formulation [Hachisuka

et al. 2012] extends the dimensionality of the path integral to ex-
plicitly capture paths constructed from disconnected sub-paths. In
its most general form, paths are effectively a sequence of (discon-
nected) segments rather than vertices. Each segment is a pair of ver-
tices, and light is transported down the potentially disconnected
endpoints of adjacent segments by convolution over a kernel func-
tion. This formulation naturally supports disconnected sub-paths
as its intrinsic entities without removing any vertices. Moreover, it
introduces the theoretical potential to construct paths using path
segments as the fundamental primitives, rather than vertices.

Despite its formulation, Hachisuka et al. [2012], or any of its fol-
low up work, did not explicitly explore this concept of segment
sampling and segment path construction. We revisit this formula-
tion from the perspective of sampling segments as a primitive and
highlight the significant practical potential of segment sampling.

3 SEGMENT-BASED LIGHT TRANSPORT
Our goal is to redefine light transport to use segments as sampling
primitives. While the concept of segments are there, the extended
path integral formulation [Hachisuka et al. 2012] still defines the
space of vertices and integrates over vertices. To this end, we pro-
pose a segment path integral that considers segments as the basic
unit of integration for the first time. As an interesting by-product
of a segment-based formulation, the kernel and throughput terms
now operate over segments, allowing for alternate interpretations
of how light is transported down disconnected segments.

3.1 Formulation
Inspired by the extended path integral formulation [Hachisuka et al.
2012], we propose a segment path integral formulation that consid-
ers segments, and segment paths, as the basic unit of integration,

𝐽𝜌 =
∫
S
𝑔𝜌 (s) ds =

∞∑
𝑘=1

∫
S𝑘

𝑔𝜌 (s) ds

=𝐽𝜌𝑘

, (3)

where 𝜌 is a pixel, S𝑘 = M2𝑘 represents the set of segments paths
swith 𝑘 segments s, defined as s = {s1 . . . s𝑘 }. Each segment 𝑠𝑖 con-
sists of two vertices s𝑖 = (x𝑖 , y𝑖 ). The contribution function 𝑔𝜌 (s)
for a segment path s,

𝑔𝜌 (s) =𝑊𝜌 (s1)
𝑘∏
𝑖=1

𝐺 (s𝑖 )
𝑘−1∏
𝑖=1

𝐾 (s𝑖 , s𝑖+1) 𝑓𝑟 (s𝑖 , s𝑖+1) 𝐿𝑒 (s𝑘 ) , (4)

is composed of a sensor responsivity term𝑊𝜌 (s) =𝑊𝜌 (𝑥1, 𝑦1) for
the first segment, a geometry term 𝐺 (s𝑖 ) for each segment, a ker-
nel function 𝐾 (s𝑖 , s𝑖+1), and an emission term 𝐿𝑒 (s𝑘 ) = 𝐿𝑒 (𝑥𝑘 , 𝑦𝑘 )
along the final segment s𝑘 . The geometry term expands to𝐺 (s𝑖 ) =
|nx𝑖 · ®s𝑖 | |ny𝑖 · ®s𝑖 |

|x𝑖−y𝑖 |2 𝑉 (x𝑖 , y𝑖 ), where nx𝑖 is the surface normal at x𝑖 , ®s𝑖
is the direction along s𝑖 from x𝑖 towards y𝑖 , and 𝑉 (x𝑖 , y𝑖 ) is the
visibility indicator function between x𝑖 and y𝑖 .

K(s1, s2) K(s3, s4)K(s2, s3)
G(s1) G(s3) G(sk)G(s2) ≈

PT
(inline)

G(s4)
Wρ(s1) Le(sk)

fr(s1, s2) fr(s2, s3) fr(s3, s4)

While the sensor responsivity term𝑊𝜌 (s1), geometry term 𝐺 (s𝑖 ),
and emission term 𝐿𝑒 (s𝑘 ) are effectively unchanged from the ex-
tended path integral formulation, the kernel function 𝐾 (s𝑖 , s𝑖+1)
and throughput 𝑓𝑟 (s𝑖 , s𝑖+1) terms now operate over pairs of seg-
ments, rather than vertices, as follows.

Kernel function. In contrast to the formulation byHachisuka et al.
[2012] where the kernel function 𝐾 (y,w) operates over a pair of
endpoint vertices, the kernel function in our formulation𝐾 (s𝑖 , s𝑖+1)
operates over a pair of segments, s𝑖 and s𝑖+1. This formulation, for
example, now allows the kernel function to depend on the direc-
tions onto y and w, which is important for formulating path filter-
ing. The kernel function can be almost arbitrary given it satisfies
the constraint, ∫

M
𝐾 (s𝑖 , s𝑖+1) dx𝑖+1 = 1 , (5)

such that convolution over the kernel function 𝐾 preserves the to-
tal system energy. A practical choice, demonstrated in the results
of this paper, is the uniform kernel over a finite region K(y𝑖 ) cen-
tered at the vertex y𝑖 , 𝐾 (s𝑖 , s𝑖+1) = (

∫
K(𝑦𝑖 ) dx𝑖+1)

−1. When the
kernel function is a Dirac delta, our segment-based formulation re-
duces to the vertex-based path integral formulation. Similarly to
advancements in photon density estimation, exploration of alter-
native kernels for segment-based light transport is an interesting
avenue of future work.
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Throughput function. Another notable difference from existing
formulations is the throughput function 𝑓𝑟 (s𝑖 , s𝑖+1), which intro-
duces an additional vertex not present in the common vertex triplet
form. To be consistent with the path integral formulation in the
limit of the kernel becoming a Dirac delta [Hachisuka et al. 2012],
we define the segment-based throughput function 𝑓𝑟 (s𝑖 , s𝑖+1) to re-
duce to the triplet form 𝑓𝑟 (x𝑖 , y𝑖 , y𝑖+1) when s𝑖 and s𝑖+1 share one
of the endpoints at y𝑖 . While there are many such possible defini-
tions, we propose a shift invariant throughput where we translate
the segments such that x𝑖+1 lies on y𝑖 ,

𝑓𝑟 (s𝑖 , s𝑖+1) = 𝑓𝑟 (x𝑖 , y𝑖 , y𝑖+1 − (x𝑖+1 − y𝑖 )) . (6)

The shift-invariant form aligns closely with the actual implementa-
tion ofmerging-basedmethods (e.g., path filtering [Deng et al. 2021;
West et al. 2022]), where incoming radiance along each segment is
reused without correcting the direction. We use the shift-invariant
form in our results and leave the exploration of other definitions
for future work.

Recursive Segment Path Integral. Given those redefinitions of 𝐾
and 𝑓𝑟 in terms of segments, one can rewrite the segment path in-
tegral into a recursive form,

𝐿(s) = 𝐿𝑒 (s) +
∫
S1

𝐾 (s, s′) 𝑓𝑟 (s, s′)𝐺 (s′)𝐿(s′) ds′ , (7)

where 𝐿(s) is the radiance transported down the segment s, and
pixel values 𝐽𝜌 are computed by the pixel-forming equation,

𝐽𝜌 =
∫
S1

𝑊𝜌 (s)𝐺 (s)𝐿(s) ds . (8)

Rewriting as a recursive integral formulation was not previously
possible in the extended path integral formulation because not all
the terms were written as functions of segments. One can think of
this recursive form as a segment-based extension of the rendering
equation [Kajiya 1986]. The recursive form, though equivalent in
solution to the segment path integral (3), provides a foundation for
implementing propagation-based algorithms that locally compute
the throughput of individual segments as we will explain later.

3.2 Basic Monte Carlo Estimation
Similarly to the path integral (1), we can approximate the solution
to the segment integral using MC integration,

〈𝐽𝜌𝑘 〉 =
𝑔𝜌 (s)
𝑝 (s) , (9)

where segment path samples s are distributed according to the PDF
𝑝 (s) (i.e., a joint PDF of sampling all the endpoints). We can simi-
larly have a MC estimator for the pixel value (8),

〈𝐽𝜌 〉 =
𝑊𝜌 (s)𝐺 (s)〈𝐿(s)〉

𝑝 (s) , (10)

where the estimate 〈𝐿(s)〉 is a nested MC estimator for Eq. (7):

〈𝐿(s)〉 = 𝐿𝑒 (s) +
𝐾 (s, s′) 𝑓𝑟 (s, s′)𝐺 (s′)〈𝐿(s′)〉

𝑝 (s′ |s) . (11)

In later sections we will explore more advanced estimation strate-
gies that can account for a wide range of sampling scenarios.

PT
(inline)

(a)

(b)

(c)

(d)
(e)

Independent

Sequential

Bridge

()

Fig. 2. While theoretically interesting, the independent segment samplers:
uniform (a), ray-casted (b), BSDF importance-sampled (c) are not good im-
portance samplers for the contribution function (4). The sequential seg-
ment samplers starting from the camera (d) and light sources (e) greatly
improve importance sampling of the segment path contribution (4).

4 SEGMENT SAMPLERS AND ESTIMATORS
As in the vertex-based counterparts [Georgiev et al. 2012;
Hachisuka et al. 2012], one can look at rendering methods based
on segments from the perspective of: 1) sampling a set of segments,
and then 2) constructing estimators based on the sampled segments.
Variations in these two steps provide a general process for explor-
ing different rendering methods based on segments.

4.1 Samplers
Let us first look at several techniques for sampling segments. Some
of these sampling techniques are mostly of theoretical interest — of-
ten lacking good importance sampling properties. These sampling
techniques will provide a baseline for more practical sampling tech-
niques introduced later in the section.

Uniform segment sampler. The simplest way to sample a segment
s is to sample its two vertices (x, y) independently and uniformly
across scene geometry, such that,

𝑝 (s) = 𝑝 (x)𝑝 (y) = 1

|M|2
, (12)

where |M| is the area of scene surfaces (see Fig. 2a). While this
sampling technique is straightforward, it importance samples none
of the terms of the contribution function. Note that uniform sam-
pling of vertices is also possible in the path integral formulation
and equally impractical because of its lack of importance sampling.

Ray tracing segment sampler. A simple improvement on the uni-
form segment sampler is importance sampling the geometry term
𝐺 (s). The first vertex x is sampled uniformly within the scene, and
the second vertex y is sampled by first sampling a direction using
cosine-weighted hemisphere sampling at x, and then projecting the
directional sample into area domain using ray casting, such that,

𝑝 (s) = 𝑝 (x)𝑝 (y|x) = 1

|M| ·
|nx𝑖 · ®s𝑖 | |ny𝑖 · ®s|
𝜋 |x − y|2

=
𝐺 (s)
𝜋 |M| , (13)

exactly importance samples the geometry term𝐺 (s) of the segment
path contribution function (4) (see Fig. 2b).

We can further improve the above strategy by additionally con-
sidering the segment throughput function 𝑓𝑟 (s, s′). After sampling
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the first vertex x, we then sample an auxiliary incoming direction
®s′, BSDF importance-sample an outgoing direction ®s conditionally
on ®s′, and project the directional sample ®s using ray casting to find
the second vertex y, such that,

𝑝 (s|®s′) = 𝑝 (x)𝑝 (y|x, ®s′) = 1

|M| ·
𝑝 (®s|x, ®s′) |ny𝑖 · ®s|

|x − y|2
, (14)

where 𝑝 (®s|x, ®s′) is a directional PDF proportional to the BSDF term
at x (see Fig. 2(c)). Note that this PDF is still conditional on ®s′. For
this PDF to make sense, there has to be a preceding segment to a
sampled segment s with the (approximately) matching direction ®s′
which may or may not exist. This exemplifies one of the key issues
with the naive segment samplers thus far — segments are sampled
independently.

Sequential segment sampler. Independent sampling of segments
is ineffective at importance sampling terms of the contribution
function (4) that usually consider pairs of segments. We thus con-
sider sampling a sequence of segments, rather than sampling them
independently (see Fig. 2d,e). This sequential segment sampler con-
siders the terms of the contribution function𝑔(s) one-by-one, form-
ing a natural counterpart to sequential vertex samplers in vertex-
based formulations (e.g., path tracing and light tracing).
When sampling a segment sequence, a good choice for impor-

tance sampling the first segment s1 is according to either sensor
responsivity 𝑝𝑊 (s1) ∼ 𝑊𝜌 (s1)𝐺 (s1) or light emission 𝑝𝐿 (s1) ∼
𝐿𝑒 (s1)𝐺 (s1). Each subsequent segment s𝑖+1 can then be condition-
ally sampled on the previous segment s𝑖 ,

𝑝 (s𝑖+1 |s𝑖 ) = 𝑝 (x𝑖+1 |s𝑖 )𝑝 (y𝑖+1 |x𝑖+1, s𝑖 )

= 𝑝𝐾 (x𝑖+1 |s𝑖 ) ·
𝑝𝜔 ( ®s𝑖+1 |x𝑖+1, s𝑖 ) |ny𝑖+1 · ®s𝑖+1 |

|x𝑖+1 − y𝑖+1 |2
, (15)

where 𝑝𝐾 (x𝑖+1 |s𝑖 ) ∼ 𝐾 (s𝑖 , s𝑖+1) importance samples the vertex
x𝑖+1 according to the kernel at s𝑖 , ®s𝑖+1 is the direction down the
segment s𝑖+1 from x𝑖+1 to y𝑖+1, and 𝑝𝜔 ( ®s𝑖+1 |x𝑖+1, s𝑖 ) ∼ 𝑓𝑟 (s𝑖 , s𝑖+1)
importance samples ®s𝑖+1 according to the BSDF term at y𝑖 .

Just like virtual perturbation in the UPS algorithm [Hachisuka
et al. 2012], we can approximately sample 𝑝𝐾 (x𝑖+1 |s𝑖 ) by duplicat-
ing y𝑖 = x𝑖+1 while keeping its PDF, avoiding explicit sampling
of x𝑖+1 in practice. This approximation with y𝑖 = x𝑖+1 effectively
turns this sequential segment sampler into an equivalent sequen-
tial vertex samplers, but with duplicated vertices and an extended
definition of the PDF 𝑝𝐾 (x𝑖+1 |s𝑖 ).

Given segment sequences starting from the camera and light
sources, a natural extension is to introduce a segment equivalent of
connections as in vertex-based samplers [Veach and Guibas 1994]
to combine different segment sequences.We refer to such segments
as bridge segments to distinguish them from the classical defini-
tion of deterministic connections. While theoretically interesting,
preliminary results (see Fig. 7) show no tangible benefit for bridge
segments in practice. We include additional details about bridge
segments in the supplemental document.

4.2 Estimators
Given these segment sampling techniques, we now look at how we
can use them to construct practical estimators. Similarly to vertex-
based methods, we can reuse sampled segments to define multiple
estimators. However, unlike vertices that are essentially tied to a
sampling direction and path position (e.g., second vertex on a light
path), segments are agnostic to how they were sampled. This extra
flexibility vastly expands the number of possible ways to construct
a complete segment path given a set of sampled segments.

We explore several baseline estimation strategies, as well as a
practical recursive estimator based on marginal multiple impor-
tance sampling (MMIS) that considers an exponential number of
techniques given sampled segments, as opposed to a linear num-
ber of techniques in vertex-based rendering [Georgiev et al. 2012;
Hachisuka et al. 2012]. We note that our goal here is not to exhaus-
tively list all possible estimators based on segments, and further
study of even more efficient estimators is left for future work.

Sequential. A simple and straightforward estimation strategy is
to use a Monte Carlo estimator (9) with a segment path sampling
technique comprised of a sequence of 𝑘 segment sampling tech-
niques (15). From this sequence of sampling techniques we draw
a single segment from each, and construct a single segment path
sampled from the segments in the order they were sampled. The
PDF of a segment path sampled in this way is the joint PDF as in

〈𝐽𝜌𝑘 〉 =
𝑔𝜌 (s)
𝑝 (s) , 𝑝 (s) = 𝑝 (s1, . . . , s𝑘 ) , (16)

and any auxiliary variables that conditioned sampling, but are not
a part of the segment path sample (e.g. incident direction in triplet
segment sampling), now parameterize the segment path sampling
technique. Constructing a single segment path sample s from the
set of sampled segments s1, . . . , s𝑘 still under-utilizes the segment
path sampling potential.

Multiple sampling techniques. In the spirit of bidirectional path
tracing (BDPT), we can reuse subsequences of sampled segment
paths to construct new segment paths. Each different way of con-
structing a segment path sample is a different segment path sam-
pling technique, and we can combine them into an estimator using
MIS [Veach 1997]. For 𝑇 segment path sampling techniques 𝑝𝑖 (s),
with 𝑛𝑖 segment path samples s𝑖 from each, the corresponding MIS
estimator is

〈𝐽𝜌𝑘 〉MIS =
𝑇∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑤𝑖 (s𝑖, 𝑗 )𝑔𝜌 (s𝑖, 𝑗 )
𝑛𝑖𝑝𝑖 (s𝑖, 𝑗 )

, (17)

where for a segment path s theweight function𝑤𝑖 (s) sums to 1 over
the 𝑇 segment path sampling techniques,

∑𝑇
𝑖=1𝑤𝑖 (s) = 1. While

this increases the number of segment path samples for the same
segment sampling cost, we can further increase segment reuse by
considering a recursive estimator.

Recursive estimation. An alternative way to construct segment
paths from sampled segments is recursively — enabled by our re-
cursive formulation (7). Starting at a known contributive segment
for the pixel-forming equation (8) (e.g., a segment that connects to
the camera), we can recursively determine the set of continuation
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segments within the non-zero support of the kernel function of the
recursive term (7). At each recursive expansion, the set of continua-
tion segment samples may have been sampled by different segment
sampling techniques (e.g., sequential sampling conditioned on dif-
ferent previous segments).
To handle these situations West et al. [2022] introduce marginal

multiple importance sampling (MMIS), which supports combining
both unconditional sampling techniques and sampling techniques
conditioned on auxiliary random variables t. We can apply their
MMIS theory to derive a general purpose estimator for the recur-
sive form of the segment path integral (see supplemental docu-
ment),

〈𝐿 (s) 〉BH = 𝐿𝑒 (s) +
𝑇∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝐾 (s, s′𝑖,𝑗 ) 𝑓𝑟 (s, s′𝑖,𝑗 )𝐺 (s′𝑖,𝑗 ) 〈𝐿 (s′𝑖,𝑗 ) 〉BH∑𝑇
𝑖′=1

∑𝑛𝑖′
𝑗 ′=1 𝑝𝑖′ (s

′
𝑖,𝑗 |t𝑖′, 𝑗 ′ )

,

(18)

wherewe use the approximated balance heuristic weights, and, sim-
ilarly, an MMIS estimator for the pixel forming equation (8),

〈𝐽𝜌 〉BH =
𝑇∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑊𝜌 (s𝑖, 𝑗 )𝐺 (s𝑖, 𝑗 )〈𝐿(s𝑖, 𝑗 )〉BH∑𝑇
𝑖′=1

∑𝑛𝑖′
𝑗 ′=1 𝑝𝑖′ (s𝑖, 𝑗 |t𝑖′, 𝑗 ′ )

. (19)

In practice, while the nested estimators of Eq. (19) can be com-
puted recursively as we expand outwards from the camera, the re-
sulting computational complexity is exponential in the number of
segments — essentially intractable. Similarly to Deng et al. [2021]’s
implementation of multi-vertex path filtering, we can use an itera-
tive propagation-based algorithm to efficiently compute the recur-
sive MMIS estimator (18), reducing the computational complexity
from exponential to linear. Further details on propagation are pro-
vided in the supplemental document.

Marginal segment path sampling. Not all sets of segment path
sampling techniques correspond well to the recursive MMIS esti-
mator (18). For these sets of sampling techniques we can use an
MMIS estimator for the segment path integral (3) that operates over
complete segment paths s,

〈𝐽𝜌𝑘 〉BH =
𝑇∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑔𝜌 (s𝑖, 𝑗 )∑𝑇
𝑖′=1

∑𝑛𝑖′
𝑗 ′=1 𝑝𝑖′ (s𝑖, 𝑗 |t𝑖′, 𝑗 ′ )

. (20)

where we use the approximate balance heuristic weights (see the
supplemental document for a complete derivation). Much like the
marginal path sampling (MPS) framework ofWest et al. [2022], this
general-purpose estimator provides a flexible framework for imple-
menting various segment-based light transport algorithms.

5 PRACTICAL ALGORITHMS
Based on samplers and estimators in the previous section, both ex-
isting and novel light transport methods can be devised by combin-
ing segment samplers with different estimation strategies.

𝒦(yi−1)

≈

PT
(inline)

≈

si+1si−1
si

p(si |si+1)

p(si |si−1)

𝒦(yi+1)

Fig. 3. In the proposed bidirectional filtering, the underlying distribution of
segments comes from sequential sampling from the camera or light sources.
Segments can then only have been sampled sequentially within the support
of the kernels, K(y𝑖−1 ) and K(y𝑖+1 ) , at each endpoint. The MMIS weight
of the segment s𝑖 only needs to consider conditioning on any segment s𝑖−1
and s𝑖+1 within kernel support, greatly bounding computational cost. Note
that the segment s𝑖 can be sampled in three different ways, as a continua-
tion of either a light or camera segment path or by directly sampling two
vertices within the kernel supports.

Segment-based path tracing. A straightforward example of
segment-based light transport methods combines a sequential seg-
ment sampler (15) with the sequential estimation strategy (16), ef-
fectively creating segment-based equivalents of path tracing and
light tracing. To overcome the limitations of unidirectional ap-
proaches, two sequential segment samplers can be combined with
a bridge segment sampler using a MIS estimator (17), yielding a
segment-based version of bidirectional path tracing (BDPT). While
theoretically intriguing, these simple rendering methods do not
fully leverage the advantages of a segment-based formulation, of-
fering no tangible benefit over their vertex-based counterparts.

Segment-based multi-vertex path filtering. We can implement
a segment-based variant of undirectional path filtering methods
[Deng et al. 2021; West et al. 2022] by combining a recursive MMIS
estimator to sets of segments sampled from different segment sam-
pling techniques. An underlying distribution of segments that come
from a sequential segment sampler (15) starting at the camera cor-
responds to multi-vertex filtering (MVF) [Deng et al. 2021]. Simi-
larly, segments sampled sequentially starting at light sources cor-
responds to photon filtering (PhF) [West et al. 2022].

Bidirectional path filtering. The vertex-based formulation under-
lying existing multi-vertex path filtering methods makes it chal-
lenging to implement a bidirectional filtering method. In contrast,
our segment-based formulation and estimators naturally handle
segment samples from almost arbitrary distributions. By applying
our recursive MMIS estimator (18) to a set of segments drawn from
sequential samplers starting at both the camera and light sources
we can implement a bidirectional filtering method (see Fig. 3). In-
terestingly, the resulting segment path sampling techniques of this
bidirectional filtering method is a superset of those in bidirectional
photon mapping [Vorba 2011]. As we demonstrate in the results,
bidirectional path filtering is robust — inheriting the importance
sampling of prior unidirectional filtering methods, but with none
of their failure cases — and significantly outperforms competing
methods in scenes with complex light transport. We include a full
algorithm and implementation details for our bidirectional path fil-
tering method in the supplemental document.
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6 RESULTS AND DISCUSSIONS
We implemented our method and prior work on a CPU-based RGB
renderer with anAMDRyzen 5950XCPU and 32 GB ofmemory. Im-
ages were rendered with a resolution of 1200 × 800, with segment
path depth limited to 8. Results were generated progressively, with
one segment path per pixel per iteration (960K camera segment
paths per iteration). The ratio of light to camera segment paths, de-
noted by 𝛽 , was set to 0.25 (see Fig. 6). The initial support of the ker-
nel function in all methods was set to 4 times the average pixel foot-
print, andwe progressively shrink the kernel support with𝛼 = 0.67
following Knaus and Zwicker [2011]. The reference implementa-
tion is publicly available on GitHub. For further implementation
details see the supplemental document.

6.1 Bidirectional Filtering
Fig. 4 compares our bidirectional filtering method to its unidirec-
tional counterparts, including multi-vertex filtering (MVF) [Deng
et al. 2021] and photon filtering (PhF) [West et al. 2022], as well as
two baseline methods bidirectional photon mapping (BPM) [Vorba
2011] and unified path sampling (UPS) [Hachisuka et al. 2012]. MVF
extends path tracing (PT) by incorporating efficient sample reuse
over generated path samples. As it consistently outperformed PT
in our tests, we chose not to include PT results. A similar rationale
applies to omitting a separate comparison of BDPT versus UPS.
The Bathroom scene has a single spherical light source, posing a

challenge due to its glossy materials and the occlusion between ob-
jects. The Saloon Bar scene contains predominantly diffuse materi-
als but is lit by six directional ceiling lights, a challenging scenario
for methods relying solely on path tracing for sample generation
(e.g., MVF). The Kitchen scene is primarily illuminated by a large
area light source, making path tracing-based methods like MVF ef-
fective, and conversely, light tracing-based methods like PhF in-
effective. The Disco Box scene features two nearly specular disco
balls reflecting light from two spot lights, resulting in chromatic
caustics that can only be handled robustly by merging light paths
(e.g. UPS, BPM, and PhF). For this challenging caustics scenario,
we increase the value of 𝛽 to 1.0 for all methods. The Warehouse
scene provides an ideal case for bidirectional filtering, where it is lit
predominantly by indirect light from several small area lights with
surrounding enclosures and contains complex occlusion.
In the Bathroom, Saloon Bar, andWarehouse scenes, our method

outperforms prior work both visually and numerically, achieving
smooth global illumination without any visible artifacts. In the
Kitchen and Disco Ball scenes, our method performs no worse than
the unidirectional filtering methods suitable for these specific sce-
narios (e.g., MVF for the Kitchen scene and PhF for the Disco Box
scene). While the unidirectional path sampling of MVF and PhF
shows strong failure cases, the bidirectional path sampling of BPM
and UPS demonstrates consistent performance and overall robust-
ness. BPM and UPS, however, fail to fully exploit the reuse poten-
tial of path samples, showing slower convergence than our bidi-
rectional filtering method. Overall our bidirectional path filtering
robustly estimates the light transport and achieves state-of-the-art
image quality across all scenes.

6.2 Filtering Efficiency and Kernel Size
In Fig. 5, we compare the performance of our method with varying
filtering kernel sizes. We use our primary ray footprint heuristic (4
times the average pixel footprint) as the baseline 1.0x kernel size.
Similar to previous methods, larger filtering kernels show faster
convergence but suffer from excessive bias, while smaller filtering
kernels trade bias for increased variance in the form of noise. By
progressively reducing the kernel size we can achieve a balance
between bias and variance reduction.

6.3 Path Reuse Efficiency
In Fig. 6, we compare the converge rates of BPM and our bidirec-
tional filtering for varying ratios 𝛽 of path samples. Our bidirec-
tional filtering uses a super set of the sampling techniques consid-
ered in BPM. These additional sampling techniques correspond to
the increased granularity is sample reuse, allowing our method to
produce lower error estimates for the same sampling cost. However,
due to quadratic overhead of filtering, performance for our method
begins to decline as the number of path samples grows large.

6.4 Adding Bridge Segments
In Fig. 7, we present preliminary experimental results that include
bridge segments (explained in detail in the supplemental) in bidi-
rectional path filtering. By including bridge segments into the set
of segments we use in propagation, we can effectively capture a
super set of the path sampling techniques used in UPS [Hachisuka
et al. 2012]. In the equal-sample comparison, the bidirectional filter-
ing variant with bridge segments shows faster convergence than
the one without. However, as shown in the equal-time results, the
error reduction of including bridge segments is negated by the
increased computational overhead. This highlights a performance
bottleneck of our method — filtering is quadratic𝑂 (𝑛2) in the num-
ber of segments in a cluster, so merely adding more segments can
be detrimental. Improving the efficiency and practicality of bridge
segments is left for future work.

7 LIMITATIONS AND FUTURE WORK
Segment sampling. Our work on segment sampling introduces a

few basic strategies, but only begins to address the broader poten-
tial of segment sampling. A key open question is identifying the
ideal target distribution for importance sampling segments to esti-
mate the segment path integral. Assuming the target distribution
is known or can be approximated, one promising avenue would
be developing a segment sampler guided by a learned distribu-
tion, inspired by ideas from path guiding in path sampling [Müller
et al. 2017]. Another potential approach involves exploring MCMC-
based segment sampling. Given that our segment framework is
compatible with path reuse, this could potentially enable the unifi-
cation of path reuse with MCMC sampling techniques. Segment
sampling can also be potentially much more suitable for quasi-
Monte Carlo (QMC) integration since segments are low dimen-
sional properties than paths where QMC integration tends to per-
form very well. Our segment-based formulation subsumes vertex-
based formulation as a special case of having Dirac-delta kernels
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(as in the UPS algorithm [Hachisuka et al. 2012]), so further com-
binations of segments and vertices samplers is another interesting
avenue to explore.
In our current implementation, bridge segments are sampled

around the endpoints of a camera segment and an arbitrary light
segment, showing negligible benefit in practice. A natural exten-
sion would involve developing a bridge segment sampler inspired
by the concept of probabilistic connections [Popov et al. 2015;
Nabata et al. 2020], improving the importance sampling of bridge
segments. More generally, the overhead of segment sampling is not
a bottleneck of our method, leaving the door open for exploration
of more advanced segment sampling techniques.

Segment paths construction. In our segment-based formulation,
the direction in which a segment is sampled does not need to be pre-
served when constructing segment paths. This flexibility enables
segments to be reused in the opposite direction than how it was
sampled. While directionality influences the computation of prob-
ability density functions (PDFs), light transport itself can be evalu-
ated in either direction using the segment path contribution func-
tion. Our current segment path construction could potentially be
generalized to a directionless variant, offering further opportuni-
ties for sample reuse and improved efficiency.

Path filtering. Similarly to prior implementations [Deng et al.
2021; West et al. 2022] of path filtering, the computational cost of
filtering grows quadratically with cluster size, limiting the feasible
size of filtering kernels. Exploring the optimal kernel and cluster
sizes, as well as the optimal distribution of camera and light paths,
could lead to further improvements in filtering performance. Addi-
tionally, the exploration of filtering-aware importance sampling of
segments could potentially lead to further filtering efficiency.
Lastly, we have primarily focused on spatial filtering over a sin-

gle set of segments. One potential direction for future research is
the exploration of filtering over additional dimensions (e.g. tem-
porally) as well as across multiple sets of segments, as in the
streaming-style resampling importance sampling (RIS) as explored
in ReSTIR [Bitterli et al. 2020; Lin et al. 2022].
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Fig. 4. Equal-time comparison (100s) of our method with unidirectional filtering methods (MVF, PhF) and bidirectional merging methods (BPM, UPS) across
five scenes. Our method demonstrates robustness under a wide-range of light transport scenarios, either outperforming competing methods or achieving
performance comparable to the best unidirectional filtering variant in their ideal rendering scenario (e.g. Kitchen for MVF and Disco Box for PhF).
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Fig. 5. Equal-time comparison (35s) of our method with varying kernel sizes, ranging from 0.25x to 4.0x. Larger filtering kernels (e.g., 2.0x, 4.0x) achieve
faster convergence but suffer from higher bias, while smaller filtering kernels (e.g., 0.25x, 0.5x) produce less biased results but require more time to converge.
Additionally, even with smaller kernel sizes, the propagation overhead remains, making our method less efficient with small kernels. We recommend using
our progressive variant, which starts at 1.0x and gradually reduces the kernel size, enabling fast initial convergence while progressively reducing bias as more
samples accumulate.
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Fig. 6. Equal time comparison (100s) of our method and BPM with different numbers of light segment paths (10k, 250k, and 1M paths). The results highlight
the efficiency of our method in path reuse, producing highly-converged results with only 10k light paths, while BPM struggles with noise. This difference
in performance is due to our methods ability to more effectively reuse disconnected path samples. However, the performance of our method declines when
using 1M light paths due to the quadratic increase in filtering cost.
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Fig. 7. Comparison of our method with and without bridge segments in the Bathroom and the Saloon Bar scenes using a fixed kernel size. The results
highlight the advantages of introducing bridge segments in an equal sample comparison. However, these advantages are less pronounced in an equal time
comparison due to the additional filtering overhead introduced by bridge segments.
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