
Supplemental: Segment-based Light Transport Simulation

WENYOU WANG, University of Waterloo, Canada
REX WEST, Aoyama Gakuin University, Japan
TOSHIYA HACHISUKA, University of Waterloo, Canada

CCS Concepts: • Computing methodologies → Rendering; Ray
tracing.

Additional KeyWords and Phrases: rendering, physically-based render-
ing, path sampling, multiple importance sampling

ACM Reference Format:
WenyouWang, RexWest, and ToshiyaHachisuka. 2025. Supplemental: Segment-
based Light Transport Simulation. ACM Trans. Graph. 44, 4 (August 2025),
5 pages. https://doi.org/10.1145/3730847

S1 SEGMENT PATH INTEGRAL DEFINITIONS
We reformulate the extended path integral [Hachisuka et al. 2012]
by changing the original extended path integral into an integral
over the segment path space. In the following, we provide the nec-
essary definitions for our segment path integral.

Path. Let x𝑖 , y𝑖 ∈ M. An extended path 𝑥 of length 𝑘 is defined
as:

𝑥 = x1y1x2y2 · · · x𝑘−1y𝑘−1x𝑘y𝑘 , (S1)

where 1 < 𝑘 < ∞. By pairing the vertices x𝑖 and y𝑖 together as a
segment 𝑠𝑖 , we can rewrite the extended path of vertices as a path
of segments:

𝑥 =x1y1x2y2 · · · x𝑘y𝑘 , (S2)
=s1s2 · · · s𝑘 , (S3)

where each segment s𝑖 = (x𝑖 , y𝑖) represents a pair of consecutive
vertices.

Space. We define S𝑘 as the space of segment paths of length 𝑘 .
The total segment path space S is then:

S =
∞∪
𝑘=1

S𝑘 . (S4)

Note that although the space is now redefined in terms of segments,
the underlying space remains the same as in the extended path in-
tegral.

Authors’ addresses: Wenyou Wang, University of Waterloo, Canada, wenyouwang@
outlook.com; Rex West, Aoyama Gakuin University, Japan, rexwest@gmail.com;
Toshiya Hachisuka, University of Waterloo, Canada, toshiya.hachisuka@uwaterloo.
ca.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3730847.

Measure. While we now integrate over a sequence of segments
rather than vertices—emphasizing the local connectivity between
consecutive vertices—the product measure 𝜇∗

𝑘
for a segment path

of length 𝑘 is equivalent to the product measure 𝜇′
𝑘
for an extended

path of length 𝑘 :

𝜇∗𝑘 =
𝑘∏
𝑖=1

𝑑 (s𝑖) =
𝑘∏
𝑖=1

(𝑑 (x𝑖) · 𝑑 (y𝑖)) . (S5)

Measurement Contribution Function. We rewrite themeasurement
contribution of the extended path integral by replacing the vertex
functions with segment functions, as shown in Equation 4. How-
ever, as discussed in Section 3.1, the kernel and throughput func-
tions in the original extended path integral cannot be directly ex-
pressed in terms of segments. Therefore, we extend the definitions
of these functions to handle segments.

S2 BRIDGE SEGMENT SAMPLERS
Given segment sequences starting from the camera and light sources,
a natural extension is to introduce a segment equivalent of connec-
tions as in vertex-based samplers [Veach and Guibas 1994] to com-
bine different segment sequences. We refer to these segments as
bridge segments to distinguish them from the classical definition
of deterministic connections.

A simple strategy to sample a bridge segment s𝑖 is to sample two
vertices in the support of the kernel function around the endpoints
z𝑖−1 ∈ (x𝑖−1, y𝑖−1) and z𝑖+1 ∈ (x𝑖+1, y𝑖+1) of two other segments
s𝑖−1 and s𝑖+1 that we want to connect,

𝑝 (s𝑖 |s𝑖−1, s𝑖+1) = 𝑝 (𝑠 |z𝑖−1, z𝑖+1) = 𝑝𝐾 (x𝑖 |z𝑖−1)𝑝𝐾 (y𝑖 |z𝑖+1) , (S6)

where the perturbation PDF 𝑝𝐾 (x|z) = |K(z) |−1 for a simple, uni-
form kernel over the region K(z) centered at z. This strategy im-
portance samples the two kernel terms at z𝑖−1 and z𝑖+1, but not the
geometry term or throughput terms, similarly to connections in a
vertex-based formulation.

In the spirit of next event estimation in path tracing and light
tracing, we can sample a bridge segment to connect an existing
segment s𝑖−1 to the camera,

𝑝 (s𝑖 |s𝑖−1) = 𝑝 (s|z𝑖−1) = 𝑝𝑊 (x𝑖)𝑝𝐾 (y𝑖 |z𝑖−1) , (S7)

where 𝑝𝑊 (x𝑖) is the PDF for sampling a vertex x𝑖 on the sensor,
and to light sources,

𝑝 (s𝑖 |s𝑖−1) = 𝑝 (s|z𝑖−1) = 𝑝𝐿 (x𝑖)𝑝𝐾 (y𝑖 |z𝑖−1) , (S8)

where 𝑝𝐿 (x) is the PDF for sampling a vertex x𝑖 on light sources.

S3 MARGINAL MULTIPLE IMPORTANCE SAMPLING
The MMIS estimator introduced by West et al. [2022] can be de-
rived by introducing a set of𝑇 technique spaces T𝑖 and a weighting

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1145/3730847
https://doi.org/10.1145/3730847

2 • Authors

function 𝑤 (𝑡, 𝑥) satisfying ∑𝑇
𝑖=1

∫
T𝑖 𝑤 (𝑡, 𝑥) = 1 for every 𝑥 , and

partitioning the integral 𝐼 into a sum:

𝐼 =
∫
X

𝑇∑
𝑖=1

∫
T𝑖
𝑤 (𝑡, 𝑥) d𝑡

=1

𝑓 (𝑥) d𝑥 =
𝑇∑
𝑖=1

∫
T𝑖

∫
X
𝑤 (𝑡, 𝑥) 𝑓 (𝑥) d𝑥 d𝑡 . (S9)

A multi-sample MIS estimator of Eq. (S9) is then simply,

⟨𝐼 ⟩MMIS =
𝑇∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑤 (𝑡𝑖, 𝑗 , 𝑥𝑖, 𝑗) 𝑓 (𝑥𝑖, 𝑗)
𝑛𝑖𝑝𝑖 (𝑡𝑖, 𝑗 , 𝑥𝑖, 𝑗)

, (S10)

where we select 𝑛𝑖 > 0 technique-sample pairs (𝑡𝑖, 𝑗 , 𝑥𝑖, 𝑗) from the
𝑖th technique-space T𝑖 , and the balance heuristic is,

𝑤 (𝑡𝑖, 𝑗 , 𝑥𝑖, 𝑗) =
𝑛𝑖𝑝𝑖 (𝑡𝑖, 𝑗 , 𝑥𝑖, 𝑗)∑𝑇

𝑖′=1 𝑛𝑖′
∫
T𝑖′ 𝑝𝑖

′ (𝑡 ′, 𝑥𝑖, 𝑗) d𝑡 ′
. (S11)

The integral in the denominator of the balance heuristic weight
function (S11) is computationally intractable, so West et al. [2022]
propose to stochastically approximate it usingMonte Carlo integra-
tion,

⟨𝐼 ⟩𝐵𝐻MMIS =
𝑇∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑛𝑖𝑝𝑖 (𝑡𝑖,𝑗 , 𝑥𝑖,𝑗)∑𝑇
𝑖′=1 𝑛𝑖′

∫
T𝑖′
𝑝𝑖′ (𝑡 ′, 𝑥𝑖,𝑗) d𝑡 ′

=𝑤 (𝑡𝑖,𝑗 ,𝑥𝑖,𝑗)

𝑓 (𝑥𝑖,𝑗)
𝑛𝑖𝑝𝑖 (𝑡𝑖,𝑗 , 𝑥𝑖,𝑗)

(S12)

≈
𝑇∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑛𝑖𝑝𝑖 (𝑡𝑖,𝑗 , 𝑥𝑖,𝑗)∑𝑇
𝑖′=1 𝑛𝑖′

1
𝑛𝑖′

∑𝑛𝑖′
𝑗 ′=1

𝑝𝑖′ (𝑡𝑖′, 𝑗 ′ ,𝑥𝑖,𝑗)
𝑝𝑖′ (𝑡𝑖′, 𝑗 ′)

𝑓 (𝑥𝑖,𝑗)
𝑛𝑖𝑝𝑖 (𝑡𝑖,𝑗 , 𝑥𝑖,𝑗)

(S13)

=
𝑇∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑓 (𝑥𝑖,𝑗)∑𝑇
𝑖′=1

∑𝑛𝑖′
𝑗 ′=1 𝑝𝑖′ (𝑥𝑖,𝑗 |𝑡𝑖′, 𝑗 ′)

, (S14)

which is an approximation of the balance heuristic, but still an
unbiased estimator for 𝐼 .

S4 DERIVATIONS FOR MMIS ESTIMATORS
For some rendering scenarioswemay havemore than one sampling
technique, and some of these sampling techniques may be condi-
tioned on auxiliary random variables that were stochastically sam-
pled. West et al. [2022] introduce marginal path sampling (MPS), an
general-purpose estimation framework to handle such situations
for vertex-based path sampling. We can derive a similar general
purpose estimator for the segment path integral (3) by extending
the domain of integration over𝑇 technique-spaces T̄ comprised of
auxiliary variable sequences t,

𝐽𝜌𝑘 =
∫
S𝑘

𝑇∑
𝑖=1

∫
T̄𝑖
𝑤 (t, s) dt

=1

𝑔𝜌 (s) ds =
𝑇∑
𝑖=1

∫
T̄𝑖

∫
S𝑘
𝑤 (t, s)𝑔𝜌 (s) ds dt ,

(S15)
for which we can construct an MMIS estimator,

⟨𝐽𝜌𝑘 ⟩ =
𝑇∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑤 (t𝑖, 𝑗 , s𝑖, 𝑗)𝑔𝜌 (s𝑖, 𝑗)
𝑛𝑖𝑝𝑖 (t𝑖, 𝑗 , s𝑖, 𝑗)

, (S16)

and use the approximate balance heuristic weighting function,

⟨𝐽𝜌𝑘 ⟩BH =
𝑇∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑔𝜌 (s𝑖, 𝑗)∑𝑇
𝑖′=1

∑𝑛𝑖′
𝑗 ′=1 𝑝𝑖′ (s𝑖, 𝑗 |t𝑖′, 𝑗 ′)

. (S17)

The estimator in Eq. (S17) offers a flexible framework for imple-
menting various segment-based light transport algorithms.

Recursive form. Similarly, we can derive a general purpose MMIS
estimator for the recursive form (7) of the segment path integral (3)
by extending the domain of integration over𝑇 technique-spaces T̄
comprised of auxiliary variable sequences t,

𝐿(s) = 𝐿𝑒 (s) +
∫
S1

𝑇∑
𝑖=1

∫
T̄𝑖
𝑤 (t, s) dt

=1

𝐾 (s, s′) 𝑓𝑟 (s, s′)𝐺 (s′)𝐿(s′) ds′ ,

(S18)

for which we can construct an MMIS estimator,

⟨𝐿(s)⟩ = 𝐿𝑒 (s) +
𝑇∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑤 (t𝑖, 𝑗 , s′𝑖, 𝑗)𝐾 (s, s
′
𝑖, 𝑗) 𝑓𝑟 (s, s

′
𝑖, 𝑗)𝐺 (s

′
𝑖, 𝑗)⟨𝐿(s

′
𝑖, 𝑗)⟩

𝑛𝑖𝑝𝑖 (t𝑖, 𝑗 , s′𝑖, 𝑗)
,

(S19)

and apply the approximate balance heuristic weighting function,

⟨𝐿(s)⟩BH = 𝐿𝑒 (s) +
𝑇∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝐾 (s, s′𝑖, 𝑗) 𝑓𝑟 (s, s
′
𝑖, 𝑗)𝐺 (s

′
𝑖, 𝑗)⟨𝐿(s

′
𝑖, 𝑗)⟩BH∑𝑇

𝑖′=1
∑𝑛𝑖′
𝑗 ′=1 𝑝𝑖′ (s

′
𝑖, 𝑗 |t𝑖′, 𝑗 ′)

,

(S20)

Similarly, we can construct anMMIS estimator for the pixel-forming
equation (8),

⟨𝐽𝜌 ⟩ =
𝑇∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑤 (t𝑖, 𝑗 , s𝑖, 𝑗)𝑊𝜌 (s𝑖, 𝑗)𝐺 (s𝑖, 𝑗)⟨𝐿(s𝑖, 𝑗)⟩
𝑛𝑖𝑝𝑖 (t𝑖, 𝑗 , s𝑖, 𝑗)

, (S21)

and with approximate balance heuristic applied,

⟨𝐽𝜌 ⟩BH =
𝑇∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑊𝜌 (s𝑖, 𝑗)𝐺 (s𝑖, 𝑗)⟨𝐿(s𝑖, 𝑗)⟩BH∑𝑇
𝑖′=1

∑𝑛𝑖′
𝑗 ′=1 𝑝𝑖′ (s𝑖, 𝑗 |t𝑖′, 𝑗 ′)

. (S22)

Discussion. It is worth noting that, while the underlying formu-
lations for the segment path integral (3) and the recursive-form
(8) are equivalent, their respective MMIS estimators are not. The
weight of a complete path under the recursive form (S19) is the
product of the recursion-local MMIS terms — capturing only a sub-
set of weighting functions that satisfy the extended segment path
integral (S15). While recursion-local MMIS weights might not be as
optimal as complete path MMIS weights, the computation can be
significantly more tractable, particularly for path reuse methods, as
we demonstrate in the experimental results.

S5 IMPLEMENTATION DETAILS
Our rendering system includes three key components: segment sam-
plers, clustering algorithms, and propagation. Each iteration of our
method involves the following steps: 1) sampling segments using
segment samplers, 2) clustering the end vertices of segments, and
3) propagating segment throughput on a per-cluster basis. While
our segment-based formulation redefines some parts of the tradi-
tional light transport simulation, most components of existing ren-
dering systems (e.g., BSDFs and path samplers) remain compatible,
requiring only light abstraction on top of a standard vertex-based
renderer. The implementation details of each step are elaborated in

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Supplemental: Segment-based Light Transport Simulation • 3

the following subsections, and a high-level pseudocode for proto-
typing our algorithm is provided in Algorithm 1.

Segment Sampling. We implemented both the sequential segment
samplers and the bridge segment sampler, following the sampling
processes outlined in Sections S2 and 4.1. The sequential segment
samplers are based on traditional path sampling but incorporate
the concept of virtual perturbation introduced by Hachisuka et al.
[2012]. Unlike traditional path samplers, our approach outputs data
as independent, disconnected segments. For the bridge segment
sampler, segment pairs are constructed to sample both end ver-
tices. Specifically, for each camera segment, a corresponding light
segment is uniformly sampled to form a pair. While this straight-
forward approach is sufficient for preliminary results, alternative
sampling schemes, such as power-based sampling, could also be
explored to enhance performance.

Clustering. Before detailing the clustering process, we define the
kernel function. Our kernel function is a uniform kernel, with its
support determined by the position-normal voxel encodingmethod,
commonly used in spatial hashing. The encoded values of the end
vertices for all segments are stored, and clustering is achieved by
sorting the vertices based on their encoded keys.This process groups
vertices within the same kernel function support. To mitigate clus-
tering artifacts, we apply jittering to the position encoding, similar
to Binder et al. [2018].
While this voxel encoding method efficiently facilitates cluster-

ing, explicitly evaluating the kernel function presents challenges.
To approximate its value, we compute the average position and nor-
mal of all vertices within a voxel and construct an imaginary plane
based on these averages. The kernel value is then approximated as
the reciprocal of the intersection area between this plane and the
voxel. This approximation may introduce a darkening artifact, akin
to the overestimated kernel size issue in photon density estimation.
However, this bias can be mitigated by progressively reducing the
voxel size.

Propagation. By replacing the range query in filtering with clus-
tering results, we can effectively produce a graph where clusters
represent nodes and edges correspond to segments.This graph struc-
ture enables an iterative estimation of the recursive MMIS estima-
tor. Below, we present algorithmic details and an intuitive discus-
sion of the propagation algorithm.
Ideally, before propagation, it is essential to pre-compute the

MMIS weights for each segment to avoid redundant computations,
as the weighting function remains unchanged during propagation.
This weighting function requires consideration of all potential tech-
niques, as outlined in Algorithm 2. Since each cluster is associated
with a fixed set of segment sampling techniques, and each segment
could only be sampled by techniques from two clusters due to the
dual kernels Fig. 3, the estimation of the MMIS weight function for
each segment involves only the two relevant clusters. This greatly
simplifies the implementation and complexity.
Once the MMIS weights are computed, the system is ready for

propagation. For each cluster, and for each outgoing segmentwithin
the cluster, the estimator in Eq. (S20) can be used to update the

outgoing radiance estimate. This updated estimate is then propa-
gated along the segment as an incoming radiance estimate for an-
other cluster. Iteratively performing this process propagates the up-
dated estimates throughout the entire graph. The propagated esti-
mates are subsequently gathered at the camera using the estimator
in Eq. (S22). For further details on MMIS weight computation and
propagation, refer to Algorithm 2 and Algorithm 3.

Discussion. This propagation process effectively forms a set of
paths and computes their contribution at the same time. A key
advantage of the propagation process for estimating the recursive
MMIS estimator is its ability to share intermediate iterative results,
thereby avoiding redundant computations. Radiance estimates of
sub-graphs are aggregated at each cluster (node) once and reused,
eliminating repetitivework for shared sub-graphs although the over-
all algorithm still has a worst-case complexity of𝑂 (𝑛2) in the num-
ber of segments.

Algorithm 1: Our Method
Input: A set of segment sampling techniques 𝑠𝑎𝑚𝑝𝑙𝑒𝑟𝑠
Input: Number of segment (path) samples for each sampler 𝑛𝑖
Input: Number of propagation iterations 𝑘

1 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ← ∅
/* Segment Sample Generation */

2 for 𝑖 ← 1 to 𝑛 do
3 𝑠 ← 𝑠𝑎𝑚𝑝𝑙𝑒𝑟 [𝑖] .𝑠𝑎𝑚𝑝𝑙𝑒 (𝑛𝑖) // draw 𝑛𝑖 samples
4 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠.𝑝𝑢𝑠ℎ (𝑠)
5 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 (𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠) /* Build Clusters */
/* MMIS Weight Comp */

6 for 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
7 for 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do
8 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 .𝑤 ←MMISWeight(𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟)

/* Propagation */
9 for 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ∈ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do
10 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 .𝑖𝑛 ← 𝐿 (𝑠𝑒𝑔𝑚𝑒𝑛𝑡)
11 for 1 to 𝑘 do
12 for 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
13 for 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do
14 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 .𝑜𝑢𝑡 ← propagation(𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟)

15 for 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ∈ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do
16 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 .𝑖𝑛 ← 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 .𝑜𝑢𝑡

/* Final Gathering */
17 for 𝑝𝑖𝑥𝑒𝑙 ∈ 𝑖𝑚𝑎𝑔𝑒 do
18 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ← 𝑔𝑒𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠𝐹𝑜𝑟𝑃𝑖𝑥𝑒𝑙 (𝑝𝑖𝑥𝑒𝑙, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠)
19 for 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ∈ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do
20 𝑖𝑚𝑎𝑔𝑒 [𝑝𝑖𝑥𝑒𝑙] .𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 (𝑠𝑒𝑔𝑚𝑒𝑛𝑡 .𝑖𝑛)

S6 ADDITIONAL RESULTS FOR CONVERGENCE AND
PERFORMANCE

In addition to the convergence results with progressive kernel size
reduction shown in Fig. 4, we also present the convergence plots for
our method with the filtering kernel size fixed at its initial value in
Fig. S2. In this configuration, our method demonstrates the fastest

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

4 • Authors

Algorithm 2: Pre-compute MMIS Weight
1 FunctionMMISWeight(𝑠 , 𝑐𝑙𝑢𝑠𝑡𝑒𝑟):
2 𝑝𝑠𝑢𝑚 ← 0

3 for𝑇 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .𝑇 do
4 for 𝑡 ∈ 𝑇 do
5 𝑝 ← 𝑝𝑐 (𝑠, 𝑡)
6 𝑝𝑠𝑢𝑚 ← 𝑝𝑠𝑢𝑚 + 𝑝

7 return 1
𝑝𝑠𝑢𝑚

Algorithm 3: Propagation
1 Function Propagation(𝑠 , 𝑐𝑙𝑢𝑠𝑡𝑒𝑟):
2 𝑜𝑢𝑡 ← 0

3 for 𝑠′ ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do
4 𝑜𝑢𝑡 ← 𝑜𝑢𝑡 + 𝑠′ .𝑤 · 𝐾 (𝑠, 𝑠′) 𝑓𝑟 (𝑠, 𝑠′)𝐺 (𝑠′)𝑠′ .𝑖𝑛
5 𝑠.𝑜𝑢𝑡 ← 𝑠.𝑜𝑢𝑡 + 𝑜𝑢𝑡
6 return 𝑠.𝑜𝑢𝑡

Bathroom Saloon Kitchen DiscoBox

Segment Generation 0.53 sec 0.50 sec 0.36 sec 0.41 sec
Clustering 0.55 sec 0.53 sec 0.59 sec 0.96 sec
Area Estimation 0.06 sec 0.04 sec 0.06 sec 0.08 sec
MMIS Weight Comp 1.24 sec 0.69 sec 0.63 sec 1.51 sec
Filtering 5.52 sec 2.23 sec 2.48 sec 7.57 sec
Iteration Time 7.90 sec 3.98 sec 4.11 sec 10.54 sec
Segment Storage 1.46 GB 1.46 GB 1.46 GB 2.19 GB
Clustering Storage 865 MB 865 MB 865 MB 1.38 GB

Table 1. Performance breakdown of one iteration of our method for a fixed
kernel size, set to the initial size of our progressive variant. We note here
that the cost of segment sampling is significantly eclipsed by the overhead
of filtering. This leaves room to explore more advanced segment sampling
techniques (that may have an increased cost) without adversely affecting
per-iteration overhead.

convergence during the initial stage. However, as the convergence
process progresses, the bias introduced by the fixed kernel size
causes our method to eventually be outperformed by multi-vertex
filtering in several scenes.
Detailed breakdowns of computation times and storage cost for

our methods with fixed kernel sizes are provided in Fig. S2. We also
include an interesting dynamic time breakdown for the progressive
kernel reduction process for the warehouse scene in Fig. S1.

REFERENCES
Nikolaus Binder, Sascha Fricke, and Alexander Keller. 2018. Fast Path Space Filter-

ing by Jittered Spatial Hashing. In ACM SIGGRAPH 2018 Talks (Vancouver, British
Columbia, Canada) (SIGGRAPH ’18). ACM, New York, NY, USA, Article 71, 2 pages.
https://doi.org/10.1145/3214745.3214806

Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A Path Space
Extension for Robust Light Transport Simulation. 31, 6 (Jan. 2012), 191:1–191:10.
https://doi.org/10/gbb6n3

Eric Veach and Leonidas J. Guibas. 1994. Bidirectional Estimators for Light Transport,
Georgios Sakas, Peter Shirley, and Stefan Müller (Eds.). 145–167. https://doi.org/

Fig. S1. Time breakdown of each stage in our pipeline for the Warehouse
scene with progressive kernel size reduction (x-axis represents samples per
pixel (SPP), and the y-axis represents time). During the progressive pro-
cess, the time required for clustering-based computation remains constant,
while the time cost for stages dependent on cluster size (MMIS Weight
Computation and Propagation) decreases but does not reach zero, as these
operations are still applied to each segment.

10/gfznbh
Rex West, Iliyan Georgiev, and Toshiya Hachisuka. 2022. Marginal Multiple Impor-

tance Sampling. In SIGGRAPH Asia 2022 Conference Papers (Daegu, Republic of Ko-
rea) (SA ’22). Association for Computing Machinery, New York, NY, USA, Article
42, 8 pages. https://doi.org/10.1145/3550469.3555388

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1145/3214745.3214806
https://doi.org/10/gbb6n3
https://doi.org/10/gfznbh
https://doi.org/10/gfznbh
https://doi.org/10/gfznbh
https://doi.org/10.1145/3550469.3555388

Supplemental: Segment-based Light Transport Simulation • 5

Bathroom Disco BoxSalon Bar Kitchen Warehouse

Fig. S2. Equal-time comparison (500s) log-log convergence plots for five test scenes (MAPE vs. Time). Our method performs best during the initial 100 seconds
of rendering. However, as rendering progresses, the bias introduced by the fixed kernel size causes the convergence process to slow down, letting MVF catch
up in terms of error reduction.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

	S1 Segment Path Integral Definitions
	S2 Bridge Segment Samplers
	S3 Marginal multiple importance sampling
	S4 Derivations for MMIS estimators
	S5 Implementation Details
	S6 Additional Results for Convergence and Performance
	References

